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Abstract A boundary integral technique is developed to study the free surface flow of a steady,
two-dimensional, incompressible, irrotational and inviscid fluid flow which is produced by two
submerged sinks (or sources) which are of equal strength, placed along a solid horizontal boundary
with a stagnation point on the free surface in a two layer stratified fluid in the presence of gravity.
A special form of the Riemann-Hilbert problem, namely the Dirichlet boundary problem, is applied
in the derivation of the governing non-linear boundary integral-differential equations which are
solved for the fluid velocity on the free surface and this involves the use of an interpolative
technique and an iterative process. Results have been obtained for the free surface flow for various
values of the Froude number and sink locations on the solid horizontal boundary and we have also
studied the largest value of the Froude number for which no convergent solutions are possible,
namely the critical Froude number. We have found that the free surface profile is dependent on two
parameters, namely the Froude number on the free surface and the non-dimensional distance
between the two sinks.

Introduction
The study of free surface fluid flows which are induced by submerged sinks or
sources have been the subject of considerable research by both fluid
dynamicists and engineers due to the numerous engineering applications of
stratified flows. Examples of common stratified flows are in the cooling of
power stations where water is stored in cooling ponds which consist of a warm
upper layer and a cooler and more dense lower layer which is pumped into the
power station cooling system; stratified flows in the field of crude oil extraction
from underground reservoirs; etc. In such problems, it is important for the
engineer to be able to know the geometry of the free surface in advance so that
the fluid may be withdrawn with maximum efficiency and stability. For further
examples of selective withdrawal, see Imberger (1980), Imberger and Hamblin
(1982) and Yih (1980).

The fluid flow induced by a submerged sink in a two layer fluid, where the
sink is placed below the free surface, is a classical free surface flow problem.
A two layered fluid comprises of two distinct fluids with different densities
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where the less dense fluid is on the top of the more dense fluid. There has been a
wide variety of research papers published on this topic and both numerical and
experimental investigations performed, see Hocking and Forbes (1992) and
Vanden-Broeck et al. (1995) for further information on the two layer problem
and Wen and Ingham (1992) for the three layer problem.

In this paper, a boundary integral technique is developed which is used to
study the free surface flow of a steady, two-dimensional, incompressible,
irrotational and inviscid fluid which arises due to two submerged sources
(or sinks) which are situated along a solid horizontal boundary in the presence
of gravity. Below the solid horizontal boundary, the fluid consists of two
homogeneous layers, each of different density and separated by a free surface
interface. There appears to be no previous research performed in which two, or
more, submerged sinks or sources are placed along a solid horizontal boundary
in a two layer fluid flow problem when there is a stagnation point on the free
surface. However, Debler and Meyerinck (1980) performed an experiment using
a holographic interferometer technique for the three-dimensional fluid flow into
two sinks in a two layer fluid and in this case the fluid flow was supercritical,
i.e. Fr . 1; and was characterised by the formation of cusp points on the free
surface in the vicinity just above the sinks.

The present numerical procedure for the solution of this type of problem is
different to most of the previous researchers in this field since it involves
the application of a special case of the Riemann-Hilbert problem, namely the
Dirichlet boundary problem (Muskhelishvilli, 1953) in the derivation of the
non-linear boundary integral-differential equations. Further, this boundary
integral technique is inherently different from the traditional boundary element
method in that it does not require the inversion of a large system of non-linear
algebraic equations and therefore requires less computational memory and
CPU time. The non-linear boundary integral equations are then solved using a
piecewise interpolation technique and an iterative process. The aim of this
paper is to study the effect of the free surface flow induced by two submerged
sinks (or sources) placed along a solid horizontal boundary with a stagnation
point on the free surface in the presence of gravity.

Formulation of the boundary integral equation
Consider the case of a steady, incompressible, inviscid, two-dimensional fluid
which comprises of two distinct layers L1 and L2, each of different constant
densities, namely r1 and r2. The layer L2 corresponds to the uppermost layer
which is the less dense fluid, say warm water or oil, L1 is the lowermost layer,
say cold water. Hence, we have r2 , r1 and the only force considered to be
acting on the fluid is gravity. The lowermost layer L1 is of infinite depth and
occupies a semi-infinite region, namely the region below A1A0

1, see Figure 1
which represents the physical plane of the two layer fluid flow induced by two
submerged sinks. The upper layer L2 is of finite depth and occupies the infinite
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strip A1BA0
1C0

1DC1. Above the two layer fluid system, two sinks of equal
strengths 2Q are placed along a solid horizontal boundary C1C 0

1 (say a layer of
ice) at the points S1 and S2, respectively, equal distance from the point D. Since
the sinks are of equal strength and are at equal distances from the Y-axis, i.e. at
(^Ls, YD), the flow can be assumed to be symmetrical about the Y-axis and
hence we only need to consider the solution of the free surface in the
left-hand-side of the X-Y plane, i.e. X # 0: The fluid flow on the free surface is
characterised by a stagnation point at the point B where the free surface falls to
its minimum elevation. There is no fluid flow in the lower layer and hence the
fluid is stagnant in this layer. The geometry of the free surface is not known
a priori but the Bernoulli equation provides a non-linear boundary condition on
the free surface flow in the upper layer which can be used to calculate the free
surface elevation, once the free surface velocity is known.

The complex potential is denoted by W ¼ Fþ iC; where F is the velocity
potential and C is the stream function and it is analytic in the fluid domain
A1BDC1.

We now introduce the non-dimensionalisation:

z ¼ x þ iy ¼ ðX þ iY Þ=H ; w ¼ wþ ic ¼ ðFþ iCÞ=U1H ;

q ¼ Q=ðU1HÞ and ls ¼ Ls=H
ð1Þ

and let the non-dimensional stream function c be c ¼ 0 on the lower boundary
andc ¼ 1 on the upper boundary. In the physical plane, the two layer stagnation
point fluid flow induced by a two submerged sinks in terms of the complex

Figure 1.
The physical plane for

the flow induced by two
sinks of equal strengths

situated along a solid
horizontal boundary

C1C 0
1 in a two layer

fluid flow configuration,
where L1, and L2 are two

distinct layers, each of
different density r1 and

r2, where r2, r1
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z-plane, with the x-axis being horizontal and the y-axis being vertical, and the
points A1 and C1 located at x ¼ 21 and the points B and D located at x ¼ 0:
The boundaries A1B and C1D are the free surface and the solid boundary,
respectively. By the application of a Schwartz-Christoffel mapping function, the
infinite strip A1BS1DC1 in the complex potential w-plane is transformed onto
the upper half-plane of the auxiliary t-plane. The angle that the free surface A1B
makes with the horizontal is given byu ¼ u2;which maps onto the negative real
axis of the t-plane as indicated by the superscript 2 . The angle that the solid
boundary C1S1 makes with the horizontal is given by u ¼ uþ; where the
superscript + indicates that the boundary C1S1 maps onto the positive real axis
of the t-plane. The tangential component of the non-dimensional fluid velocity on
the free surface and solid boundary are given by u2 and u +, respectively. From
this point onwards, we let any variable with a superscript (2 ) indicate that the
variable is related to the free surface A1B (or the negative real t-plane) and the
superscript (+) indicate that the variable is related to the solid boundary C1S1

(or the positive real t-plane).
The fluid velocity at any point on the free surface satisfies the Bernoulli

equation and can be written in non-dimensional form,

Fr2

2
ðu2Þ2 2 y2ðxÞ ¼

Fr2

2
on A1B ð2Þ

where Fr is the Froude number on the free surface and is defined by

Fr ¼ U1=
ffiffiffiffiffiffiffi
gH

p
ð3Þ

The region occupied by the fluid flow, namely A1BDC1, in the z-plane, is
mapped onto the w-plane and, without any loss in generality, the free surface
A1B and the solid boundary C1D in the physical plane are mapped in the
w-plane onto the streamlines c ¼ 0 and 1, respectively. The logarithm of the
transformation of the complex velocityV, given by the equation dw=dz ¼ ue2iu;
is given by

V ¼ lnðdw=dzÞ ¼ t2 iu ð4Þ

where u is the non-dimensional fluid speed at some point in the flow field, u is the
angle that the fluid velocity vector makes with the positive x-axis and t ¼ lnðuÞ;
dw/dz and V are analytic functions within the infinite strip A1BS1DC1 shown
in the w-plane and whose imaginary part, Im{VðtÞ} ¼ 2u; is related to
the angle that the solid boundary and the free surface makes with the horizontal
and its real part,Re{VðtÞ} ¼ t; is related to the fluid velocity vector on the solid
boundary and the free surface (Figure 2(a)).

The infinite strip A1BS1DC1 in the complex potential w-plane is
transformed onto the upper half-plane of the auxiliary t-plane, t ¼ hþ ij; by
applying the Schwartz-Christoffel mapping function given by

t ¼ 2e2pw ð5Þ
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The transformed plane is shown in Figure 2(b) and the Schwartz-Christoffel
mapping function, namely equation (5), transforms the domain occupied by the
fluid in the infinite strip 0 # c # 1 in the w-plane, to the upper half of the
t-plane. The solid boundary C1D corresponds to the positive real t-plane,
h . hd and the free surface A1B of the flow domain corresponds to remainder
of the t-axis, h , hb:

The dynamic boundary condition on the free surface A1B is given by the
Bernoulli equation (2) on A1B. On the fixed solid boundary C1D, the fluid
velocity component normal to the surface is zero. The required variables,
namely the fluid velocity on the free surface boundary, can be used to solve a
Dirichlet boundary-value problem. The Dirichlet method for a boundary-value
problem in the upper plane is introduced to express V as a function of t. For the
Dirichlet boundary-value problem, the boundary conditions on the real h-axis
of the t-plane are as follows:

Figure 2.
(a) The w-plane for the

fluid flow due to a
submerged sink S1 along

a solid horizontal
boundary in a two layer
fluid, and (b) the t-plane

for the fluid flow due to a
submerged sink S1

placed along a solid
horizontal boundary in a

two layer fluid
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On A1B ðh , hbÞ; ImVðhÞ ¼ 2u2ðhÞ ð6Þ

On BD ð21 , h , hdÞ; Im VðhÞ ¼ 2p=2 ð7Þ

On DS1 ðhd , h , 0Þ; Im VðhÞ ¼ 2p ð8Þ

On C1D ðh . 0Þ; Im VðhÞ ¼ 0 ð9Þ

We express the logarithmic variable V, given by equation (4), as a function of
the single variable t and the problem then reduces to a Dirichlet
boundary-value problem in the upper half-plane. The Dirichlet
boundary-value problem states that when the imaginary part of an
analytical function VðtÞ ¼ tðtÞ2 iuðtÞ on the real axis h of the upper half
plane is known, i.e. the angle that the free surface makes with the horizontal is
given, i.e. Im VðhÞ ¼ 2uðhÞ; and it satisfies the Holder condition at h ¼ ho

for all values of h on the real axis sufficiently close to ho, namely

juðhÞ2 uðhoÞj # Ajh2 hoj
m

and 0 , A , 1; 0 , m # 1 ð10Þ

then the solution is found by referring to the work of Muskhelishvilli (1953) and
is given by the Schwarz formula, namely

VðtÞ ¼ 2
1

p

Z 1

21

uðhÞ

h2 t
dhþV1 ð11Þ

where V1 is the value of the function V(t) at t ¼ 1 and since t ð1Þ ¼ 0 and
uð1Þ ¼ 0; then this implies that V1 ; 0: Since we know the angle that the free
surface makes with the horizontal, we only have to find the fluid velocity on the
free surfaces. On letting t approach the point ho on the real axis from the upper
half plane and taking the Cauchy principal value, we obtain

VðhoÞ ¼ t ðhoÞ2 iuðhoÞ ¼ 2
1

p

Z 1

21

uðhÞ

h2 t
dh2 iuðhoÞ ð12Þ

Since we only require the fluid velocity on the free surface, we compare the real
parts of equations (4) and (12), and by using the boundary conditions (6)-(9),
and after some algebraic manipulations of equation (12), we find that the fluid
velocity on the free surface is given by

lnðuðhoÞÞ ¼ 2
1

p

Z 1

21

u2ðhÞ

h2 ho
dh2

1

2
ln

ðho 2 hdÞ

ð1 þ hoÞ

����
����2 ln

ho

ðho 2 hdÞ

����
���� ð13Þ

which gives the fluid velocity, u(ho), on the free surface C1D, which
corresponds to the region given by h . hd in the t-plane. We see from equation
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(13) that there exist three singularities, namely, one at ho ¼ hd; which
corresponds to the stagnation point D, another at ho ¼ 21; which corresponds
to the stagnation point B and finally at ho ¼ 0; which corresponds to the
submerged sink at the point S1 in the physical plane.

Now, we introduce the independent variable s, which is taken to be the arc
length along the boundaries, and apply equation (5) to the obtained relations
that connect the t-plane to the physical plane for the free surface boundaries,
namely

dh ¼ pe2pwðsÞuðsÞ ds on G1

dh ¼ 2pe2pwðsÞuðsÞ ds on G2

ð14ðaÞ and ðbÞÞ

where the free surface and the solid boundary are denoted by G1 and G2,
respectively. Along the free surface we have

uðsÞ ¼ dwðsÞ=ds ð15Þ

which on integration gives

wðsÞ ¼ wB þ

Z s

0

uðlÞ dl on G1 ð16Þ

wðsÞ ¼ wD þ

Z s

0

uðlÞ dl on G2 ð17Þ

where we take the value of the potential functions at the points B and D to be
wB and wD, respectively. In the physical plane we may write equation (13) to
give the fluid velocity on the free surface as

lnðuðsÞÞ ¼ 2

Z
G1

u2ðlÞhðlÞuðlÞ

hðlÞ2 hoðsÞ
dl2

1

2
ln

ðhoðsÞ2 hdÞ

ð1 þ hoðsÞÞ

����
����

2 ln
hoðsÞ

ðhoðsÞ2 hdÞ

����
���� ð18Þ

where h(s) and ho(s) are given implicitly by

hðlÞ ¼ 2e2pwðlÞ; hoðsÞ ¼ 2e2pwðsÞ on G1 ð19Þ

hðlÞ ¼ 2e2pwðlÞ; hoðsÞ ¼ 2e2pwðsÞ on G2 ð20Þ

and w(l) and w(s) are the velocity potentials at any general point and the
specific point l ¼ s; respectively. The solution of the boundary integral
equation can be obtained on the boundary G1 in the physical plane, where we
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know the function u2ðsÞ: The unknown variables are the fluid velocity u(s) and
the (x, y) co-ordinates of the free surface and these variables are found by an
iterative procedure as described in the next section.

The position of the sink S1 from the point D is calculated by using the
numerical technique which involves the application of equation (13) for the
fluid velocity, u, on the free surface and the potential function w given by
equation (15). The value of the velocity potential wD at the point D determines
the value of ls and the value of wD is fixed and it is chosen appropriately to give
the desired value of ls: The position of the sink is found by the use of equation
(15) which relates the arc length of the free surface, s, in the physical plane to
variables in the upper half of the t-plane, i.e.

dso ¼
dho

puðhoÞho
ð21Þ

Substitution of equation (13) for u(ho) in equation (21) yields the position of the
sink, ls; from the point D as follows:

ls ¼
1

p

Z 0

hd

e
1
p

R 21

21

u2ðhÞ
h2ho

dh

n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ hoÞðho 2 hdÞ

p dho ð22Þ

where the integral in the numerator can be estimated by approximating
u2ðhÞ ¼ ðu2

i þ u2
iþ1Þ=2: It should be noted from equation (22) that the sink

distance ls from the point D is dependent on the value of hd or wD and it is also
dependent on the angle that the free surface makes with the horizontal, u 2 .
Therefore any calculation of the sink distance from the point D is performed
once a convergent solution is obtained.

Numerical and iterative method for the boundary integral equation
In order to evaluate the integrals that occur in equation (18), we use a similar
interpolative technique to that described by Wen and Manik (2000). We
discretise the integrals in equation (18) over N small intervals ½hi; hiþ1� and
approximate the unknown function using a piecewise constant interpolation
technique which enables us to perform analytical integrations over a small
interval ½hi; hiþ1� as follows. We use a piecewise constant procedure and over
each sub-interval ½hi; hiþ1� where there is no singularity point in the line of
integration, i.e. hk � ½hi; hiþ1� where h ¼ hk is the singularity point, we
replace the unknown function u2(h) by constant interpolation, i.e. u2ðhÞ ¼
ðu2

i þ u2
iþ1Þ=2: If the singularity occurs at h ¼ hk in the interval ½hi; hiþ1�

then we approximate u2ðhÞ by u2ðhÞ ¼ u2
k ; where u2

k is the angle that the free
surface makes with the horizontal at the singularity point h ¼ hk:

The iterative numerical procedure employed to solve equations (15) and (18)
is as follows.

HFF
13,6

800



(1) For the first iteration, we assume the geometry of the free surface to be
initially in the form of a horizontal straight line, namely y2ðsÞ ¼ 0:
Hence, the angle that the free surface makes with the horizontal is
known, i.e. uðsÞ ¼ 0: We then discretise the x-axis of the boundaries A1B
and C1D into N grid points, where the angle u(s) that the free surface
makes with the horizontal at each grid point is known.

(2) For the first iteration, we assume the initial fluid velocity u n(s) on the
free surface A1B to be given by u0ðsÞ ¼ 1 where the superscript n
denotes the number of iterations.

(3) The velocity potential w(s) on the free surface A1B and the solid
boundary C1D can be found by numerically integrating equation (15),
i.e.

w ð0Þ ¼ w ð0ÞðsBÞ þ

Z s

sB

u ð0ÞðlÞ dl on G1 ð23Þ

w ð0Þ ¼ w ð0ÞðsDÞ þ

Z s

sD

u ð0ÞðlÞ dl on G2 ð24Þ

(4) We find the values of h(s) on the t-plane using equations (19) and (20).

(5) The new fluid velocity distribution unþ1ðsÞ on the free surface A1B is
found by substituting the values of u 0(s) and h0(s) into the right hand
side of equation (18).

(6) The new fluid velocity unþ1ðsÞ on the free surface is used to calculate the
y2ðsÞ co-ordinate of the free surface using equation (2).

(7) The new angle unþ1ðsÞ that the free surface makes with the horizontal is
calculated using a central-difference method, namely

uiðsÞ ¼ tan21 yiþ1ðsÞ2 yi21ðsÞ

xiþ1ðsÞ2 xi21ðsÞ

� 	
ð25Þ

(8) The new fluid velocity distribution unþ1ðsÞ is used as the new guess for
the fluid velocity on the free surface A1B and inserted in step (2).

(9) The iterative process is repeated until the fluid velocity u(s) on free
surface A1B and the velocity potential w(s) have converged to within the
required level of accuracy, say 1, such that

junþ1ðsÞ2 unðsÞj , 1; jwnþ1ðsÞ2 wnðsÞj , 1 on G1 ð26Þ

Numerical results and discussion
Calculations have been performed for the free surface profiles in the presence of
two sinks for various values of the Froude number and sink distances ls from
the point D in a two layer fluid. Initially, we study the effect on the free surface
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of increasing the Froude number with the sink distance ls ¼ 1 from the point D
and then examine the free surface for various values of ls for given Froude
numbers.

For most of the cases we have considered in this paper, we have found that a
mesh size ofDs ¼ 0:015 and the number of points on the free surface of N ¼ 400
was sufficient to give graphically indistinguishable results when larger values
of N and smaller values of Ds were employed. However, it is observed that the
values of Ds and N necessary to give such results were dependent on the values
of the upstream Froude numbers. Further, we have studied the critical Froude
numbers, i.e. the largest value of the Froude number for which convergent
solutions are possible, and it was found necessary to use a larger value of N and a
smaller value ofDs in order to accurately determine and compute the free surface
profiles. The number of grid points N was also dependent on the value of the
distance ls of the sink from the point D. To find solutions for large values of ls;
the range of values of x, i.e. the length of the line C1D also increases in order to
obtain the full geometry of the free surface profile, therefore requiring a larger
number of grid points N, e.g. for ls < 6 and Fr < 0:1 we require N ¼ 800 and
Ds ¼ 0:015 when using piecewise constant interpolation. We found that the
iterative procedure was convergent and, in general, it required less than about 20
iterations to obtain results with an accuracy of 1 ¼ 1025: This level of accuracy
was found to be sufficient since any smaller value of 1 produced results which
were graphically indistinguishable.

Fluid flow for various Froude numbers
Figure 3 shows the free surface flow induced by two sinks of equal strengths,
i.e. q1 ¼ q2 ¼ 1; non-dimensionalised with respect to U1H, in a two layer fluid

Figure 3.
The free surface flow
induced by two sinks
of equal strength in a
two layer fluid situated
on a solid horizontal
boundary at
(x, y) ¼ (21, 1) and (1, 1),
where ls¼1.0 for
upstream Froude
numbers Fr ¼ 0.025,
0.05, 0.075 and 0.1
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and situated on a solid boundary at y ¼ 1:0: The sinks are situated at the
points (x, y)¼ (2ls, 1) and ðls; 1Þ; respectively, for Froude numbers
Fr ¼ 0:025; 0.05, 0.075 and 0.1, and there is a stagnation point on the free
surface. We observe, since the sink strengths are equal, that the free surface is
symmetrical about the line x ¼ 0 and therefore we only present the free surface
in the region x # 0: In all cases, far upstream the free surface depth is unity and
the surface falls gently until the flow approaches the sinks S1 and S2. In
general, we observe that for all values of Fr considered, the free surface depths
increase monotonically until the free surface reaches a maximum depth. The
free surface depth increases most rapidly in the region close to the vicinity of
the x location of the sinks, i.e. 22:0 , x , 21:0: It is interesting to note that
the free surface reaches a maximum depth directly below the point x ¼ 0; at
which point the fluid velocity is zero. At this stagnation point we can calculate
the exact position of the free surface using the Bernoulli equation (2). Further,
we observe that an increase in the Froude number from Fr ¼ 0:05 to 0.1 has the
effect of increasing the curvature of the free surface and if we set the Froude
number on the free surface to be zero, i.e. Fr ¼ 0; then from the Bernoulli
equation (2), the free surface is the horizontal line, y2ðxÞ ¼ 0: We observe that
when the upstream Froude number is Fr¼ 0.025, then the free surface is close
to being horizontal and is relatively unaffected by the presence of the sink. As
the upstream Froude number increases from 0.025 to 0.1, we observe that both
the free surface curvature and depth increase and this becomes more
pronounced at larger values of Fr, especially in the region 22:0 , x , 21:0:
We find that the critical value of the Froude number above which no
convergent solution can be found is approximately 0.252 and it should be noted
that near this critical Froude number there are no signs of oscillations on the
free surface which may suggest the presence of waves.

Figure 4 shows the free surface fluid velocity u for the free surfaces shown in
Figure 3, induced by a sink on a solid horizontal boundary at y ¼ 1:0 and
ls ¼ 1:0; for upstream Froude numbers Fr ¼ 0:025; 0.05, 0.075 and 0.1 in a two
layer fluid. For all values of Fr investigated, we observe that the free surface
velocity profiles are graphically indistinguishable. The reason being that the
change in the free surface depth, as shown in Figure 3, is relatively small, being
in the range 0.0-0.005, and therefore the effect on the free surface velocity is also
small. Further, as we would expect, for all the values of Fr investigated, the free
surface velocity far upstream is unity and decreases to zero at the stagnation
point x ¼ 0; with the most rapid change in the free surface velocity occurring in
the region close to the x location of the sink, i.e. 22:0 , x , 21:0:

Fluid flow for various sink distances ls

Figure 5 shows the free surface flow induced by two sinks of equal strength on
a solid boundary at y ¼ 1:0 when the sink distances are ls ¼ 0; 1.0, 2.0 and 3.0
for Fr ¼ 0:05 and 0.1, in a two layer fluid. We observe that the general
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behaviour of the free surface profiles in Figure 5(a) and (b) are very similar,
except that the depths of the free surfaces in Figure 5(b) are greater since the
Froude number used in Figure 5(b) is larger, i.e. Fr ¼ 0:1: We observe from
Figure 5(a) that increasing ls has a very important effect on the free surface
profiles. For the case when ls ¼ 0; we find that the free surface is relatively
close to the y-axis, as opposed to the situation when ls ¼ 1:0; 2.0 and 3.0.
The greatest variation of the curvature in the free surface for ls ¼ 0 occurs in
the region 21:5 , x , 20:5: As we increase ls; i.e. move the sink more in the
negative direction, we find that the free surface profile is also “moved” or
translated in the negative direction by a factor approximately proportional to
ls: It is also interesting to note, the case ls ¼ 2:0; where the free surface
becomes almost horizontal at x < 21:0; and for ls ¼ 3:0; the free surface
becomes horizontal at x < 22:0: This is in contrast to the case when ls ¼ 0;
where the free surface depth continues to increase until it reaches the
stagnation point. We find that the values of the critical Froude number are
approximately 0.290, 0.252, 0.201 and 0.178 when the sink distances are ls ¼ 0;
1.0, 2.0 and 3.0, respectively, and at the critical Froude number there are no
signs of waves on the free surface. It is interesting to note that the maximum
value of the critical Froude number occurs when ls ¼ 0 and we observe that on
increasing ls; i.e. as the sink moves further away from the point D, this has the
effect of reducing the critical Froude number. This phenomena could be due to
the fact that as the sink moves away from the point D, the region in which the
free surface velocity is close to zero, i.e. the fluid is stagnant, also increases,
(Figure 6). This may create an instability in the two layer system at which point

Figure 4.
The free surface velocity
u for the free surfaces
shown in Figure 3
induced by two sinks of
equal strength in a two
layer fluid situated on a
solid horizontal
boundary at y ¼ 1.0 and
ls¼1.0 for upstream
Froude numbers
Fr ¼ 0.025, 0.05, 0.075
and 0.1
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Figure 5.
The free surface flow in a

two layer fluid induced
by a submerged sink on

a solid boundary at
y ¼ 1.0 when the sink
distances are ls¼0, 1.0,

2.0 and 3.0 for
(a) Fr ¼ 0.05, and

(b) Fr ¼ 0.1
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mixing between the two fluids occurs and therefore the critical Froude number
decreases.

Figure 6 shows the free surface velocity u for the free surfaces shown in
Figure 5(a) which is induced by a submerged sink on a solid boundary at
y ¼ 1:0 when ls ¼ 0; 1.0, 2.0 and 3.0, for Fr ¼ 0:05; in a two layer fluid. We
observe that there is a difference in the free surface velocity profiles because the
values of ls are different, similar to the difference in the free surface profiles
observed in Figure 5(a). We also note, as ls increases, the region in which the
free surface velocity is very close to zero, or becomes stagnant, also increases.
For example, when ls ¼ 2:0; the free surface velocity is approximately zero in
the region 20:25 , x # 0 but when ls ¼ 3:0 the region in which the free
surface is approximately zero has increased to 21:25 , x # 0:

Critical conditions
We find that on increasing the sink distance ls, the critical Froude number, for
a given value of ls; decreases. The critical values of the Froude number were
found to be approximately 0.29, 0.25, 0.20 and 0.18 when ls ¼ 0; 1.0, 2.0 and 3.0,
respectively. However, we also note that the value of ls is dependent on the
value of the velocity potential at the point D, i.e. wD (Figure 1). Figure 7 shows
the relationship between ls and the velocity potential value wD and it is
observed that when the value of wD is large, e.g. wD < 5:5; then ls < 0:
However, to increase the value of ls it is necessary to reduce the value of wD, for
example when wD ¼ 1028; ls @ 5:8: Therefore to find results for ls @ 5:8; it is

Figure 6.
The free surface velocity
for the free surface
shown in Figure 5(a)
which are induced by a
submerged sink on a
solid boundary at
y ¼ 1.0 when the sink
distances are ls¼ 0, 1.0,
2.0 and 3.0, for
Fr ¼ 0.05, in a two
layer fluid
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necessary to have wD ! 1028: Computationally, finding convergent solutions
for large values of ls becomes more difficult for a number of reasons. First, for
large values of ls; say ls @ 8; we find that the value of wD is very small,
typically wD ! 10212; and convergent solutions become increasingly more
difficult to obtain and ultimately when wD becomes too small, the numerical
scheme breaks down. Secondly, in order to find solutions for large values of ls;
the length C1D also has to increase in order to obtain the full geometry of the
free surface profile, which in turn requires a larger number of grid points, N,
and therefore increasing the computational time required to obtain convergent
solutions.

Conclusions
In this paper, we have developed an accurate and robust boundary integral
technique for two-dimensional, inviscid, steady, irrotational free surface fluid
flows which are induced by two submerged sinks or sources of equal strength
which are situated along a solid horizontal boundary with a stagnation point on
the free surface of a two layer fluid in the presence of gravity. The non-linear
integral equations derived through the application of the Dirichlet problem,
which is a special case of the Riemann-Hilbert problem, have been solved using
a boundary integral method which involves the discretisation of the non-linear
integral equations and the use of an interpolative technique and an iterative
process. The boundary integral technique developed in this paper is different

Figure 7.
The relationship between
the sink distance ‘s and

the velocity potential
value wD

The fluid flow
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from the traditional boundary element method in that it does not require the
inversion of a large system of non-linear algebraic equations and therefore
requires less computational memory and CPU time.

This boundary integral technique has been used to study the free surface
flow for various Froude numbers and sink locations, ls; in a two layer fluid. We
have found that increasing the sink distance, ls; has the effect of reducing the
value of the critical Froude number, which is the maximum value of the Froude
number for which convergent solutions are possible and also this increases the
number of iterations required for convergence. As the Froude number
increases, we note that the number of iterations increases in order to obtain
convergent solutions until the critical Froude number is reached and for any
further increase in the Froude number the solution breaks down without any
signs of oscillations, i.e. the existence of possible waves occurring on the free
surface.
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