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Abstract A boundary integral technique is developed to study the free surface flow of a steady,
two-dimensional, incompressible, irrotational and inviscid fluid flow which is produced by two
submerged sinks (or sources) which are of equal strength, placed along a solid hovizontal boundary
with a stagnation point on the free surface in a two layer stratified fluid in the presence of gravity.
A special form of the Riemann-Hilbert problem, namely the Dirichlet boundary problem, is applied
n the derivation of the governing non-linear boundary integral-differential equations which are
solved for the fluid velocity on the free surface and this involves the use of an interpolative
technique and an iterative process. Results have been obtained for the free surface flow for various
values of the Froude number and sink locations on the solid horizontal boundary and we have also
studied the largest value of the Froude number for which no convergent solutions are possible,
namely the critical Froude number. We have found that the free surface profile is dependent on two
parameters, namely the Froude number on the free surface and the non-dimensional distance
between the two sinks.

Introduction

The study of free surface fluid flows which are induced by submerged sinks or
sources have been the subject of considerable research by both fluid
dynamicists and engineers due to the numerous engineering applications of
stratified flows. Examples of common stratified flows are in the cooling of
power stations where water is stored in cooling ponds which consist of a warm
upper layer and a cooler and more dense lower layer which is pumped into the
power station cooling system; stratified flows in the field of crude oil extraction
from underground reservoirs; etc. In such problems, it is important for the
engineer to be able to know the geometry of the free surface in advance so that Emerald
the fluid may be withdrawn with maximum efficiency and stability. For further
examples of selective withdrawal, see Imberger (1980), Imberger and Hamblin

(1982) and Yih (1980). it for He & Fhid Flow
The fluid flow induced by a submerged sink in a two layer fluid, where the o s
sink is placed below the free surface, is a classical free surface flow problem. © MCB UP Limited

. . . . . . . .. 0961-5539
A two layered fluid comprises of two distinct fluids with different densities  por 10.110809615530310498420
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where the less dense fluid is on the top of the more dense fluid. There has been a
wide variety of research papers published on this topic and both numerical and
experimental investigations performed, see Hocking and Forbes (1992) and
Vanden-Broeck et al. (1995) for further information on the two layer problem
and Wen and Ingham (1992) for the three layer problem.

In this paper, a boundary integral technique is developed which is used to
study the free surface flow of a steady, two-dimensional, incompressible,
irrotational and inviscid fluid which arises due to two submerged sources
(or sinks) which are situated along a solid horizontal boundary in the presence
of gravity. Below the solid horizontal boundary, the fluid consists of two
homogeneous layers, each of different density and separated by a free surface
interface. There appears to be no previous research performed in which two, or
more, submerged sinks or sources are placed along a solid horizontal boundary
in a two layer fluid flow problem when there is a stagnation point on the free
surface. However, Debler and Meyerinck (1980) performed an experiment using
a holographic interferometer technique for the three-dimensional fluid flow into
two sinks in a two layer fluid and in this case the fluid flow was supercritical,
1e. Fr > 1, and was characterised by the formation of cusp points on the free
surface in the vicinity just above the sinks.

The present numerical procedure for the solution of this type of problem is
different to most of the previous researchers in this field since it involves
the application of a special case of the Riemann-Hilbert problem, namely the
Dirichlet boundary problem (Muskhelishvilli, 1953) in the derivation of the
non-linear boundary integral-differential equations. Further, this boundary
integral technique is inherently different from the traditional boundary element
method in that it does not require the inversion of a large system of non-linear
algebraic equations and therefore requires less computational memory and
CPU time. The non-linear boundary integral equations are then solved using a
piecewise interpolation technique and an iterative process. The aim of this
paper is to study the effect of the free surface flow induced by two submerged
sinks (or sources) placed along a solid horizontal boundary with a stagnation
point on the free surface in the presence of gravity.

Formulation of the boundary integral equation

Consider the case of a steady, incompressible, inviscid, two-dimensional fluid
which comprises of two distinct layers L, and L, each of different constant
densities, namely p; and p.. The layer L, corresponds to the uppermost layer
which is the less dense fluid, say warm water or oil, L, is the lowermost layer,
say cold water. Hence, we have p; < p; and the only force considered to be
acting on the fluid is gravity. The lowermost layer L; is of infinite depth and
occupies a semi-infinite region, namely the region below A.A%L, see Figure 1
which represents the physical plane of the two layer fluid flow induced by two
submerged sinks. The upper layer L, is of finite depth and occupies the infinite



strip AoBALCWDCo. Above the two layer fluid system, two sinks of equal
strengths 2@ are placed along a solid horizontal boundary C.,C% (say a layer of
ice) at the points S; and S», respectively, equal distance from the point D. Since
the sinks are of equal strength and are at equal distances from the Y-axis, i.e. at
(=L, Yp), the flow can be assumed to be symmetrical about the Y-axis and
hence we only need to consider the solution of the free surface in the
left-hand-side of the X-Y plane, i.e. X = 0. The fluid flow on the free surface is
characterised by a stagnation point at the point B where the free surface falls to
its minimum elevation. There is no fluid flow in the lower layer and hence the
fluid is stagnant in this layer. The geometry of the free surface is not known
a priovi but the Bernoulli equation provides a non-linear boundary condition on
the free surface flow in the upper layer which can be used to calculate the free
surface elevation, once the free surface velocity is known.

The complex potential is denoted by W = ® + 1W, where ® is the velocity
potential and W is the stream function and it is analytic in the fluid domain
ABDC.,..

We now introduce the non-dimensionalisation:

z=x+y=X+1Y)/H, w=o¢+ip=(P+1V)/UH,
)
q=Q/(UxH) and /s = Ls/H

and let the non-dimensional stream function ¢ be ¢» = 0 on the lower boundary
and ¢y = 1 on the upper boundary. In the physical plane, the two layer stagnation
point fluid flow induced by a two submerged sinks in terms of the complex
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Note: The position of the sinks are at (X, Y) = (-Lg, Yp) and (L, Yp) and there is a stagnation
point on the free surface at the point B, i.e. at the point (0, Yg)
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Figure 1.

The physical plane for
the flow induced by two
sinks of equal strengths
situated along a solid
horizontal boundary
CoCl in a two layer
fluid flow configuration,
where L1, and L, are two
distinct layers, each of
different density p; and
po, where p2 < py
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z-plane, with the x-axis being horizontal and the y-axis being vertical, and the
points A and C,, located at x = —oo and the points B and D located at x = 0.
The boundaries A..B and C.D are the free surface and the solid boundary,
respectively. By the application of a Schwartz-Christoffel mapping function, the
infinite strip A..BS1DC., in the complex potential w-plane is transformed onto
the upper half-plane of the auxiliary f-plane. The angle that the free surface A B
makes with the horizontal is given by 6 = 6, which maps onto the negative real
axis of the #-plane as indicated by the superscript —. The angle that the solid
boundary C.S; makes with the horizontal is given by 6 = 6™, where the
superscript + indicates that the boundary C..S; maps onto the positive real axis
of the t-plane. The tangential component of the non-dimensional fluid velocity on
the free surface and solid boundary are given by #~ and « *, respectively. From
this point onwards, we let any variable with a superscript (—) indicate that the
variable is related to the free surface A..B (or the negative real {-plane) and the
superscript (+) indicate that the variable is related to the solid boundary C..S;
(or the positive real -plane).

The fluid velocity at any point on the free surface satisfies the Bernoulli
equation and can be written in non-dimensional form,

2 2
F%(%‘)Z—y‘(x);%r on AwB 2)
where Fr is the Froude number on the free surface and is defined by

The region occupied by the fluid flow, namely A.BDC.,, in the z-plane, is
mapped onto the w-plane and, without any loss in generality, the free surface
AB and the solid boundary C.D in the physical plane are mapped in the
w-plane onto the streamlines s = 0 and 1, respectively. The logarithm of the
transformation of the complex velocity 2, given by the equation dw/dz = ue ™%,
is given by

QO =/n(dw/dz) = 7— 10 (Y]

where « is the non-dimensional fluid speed at some point in the flow field, 61s the
angle that the fluid velocity vector makes with the positive x-axisand 7 = /n(«),
dw/dz and () are analytic functions within the infinite strip ABS1DC, shown
in the w-plane and whose imaginary part, #m{Q(f)} = —0, is related to
the angle that the solid boundary and the free surface makes with the horizontal
and its real part, Ze{(#)} = T,1isrelated to the fluid velocity vector on the solid
boundary and the free surface (Figure 2(a)).

The infinite strip A.BS1DC, in the complex potential w-plane is
transformed onto the upper half-plane of the auxiliary #plane, t = 1 + i£, by
applying the Schwartz-Christoffel mapping function given by

f=—e ™ )
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The transformed plane is shown in Figure 2(b) and the Schwartz-Christoffel
mapping function, namely equation (5), transforms the domain occupied by the
fluid in the infinite strip 0 =< s = 1 in the w-plane, to the upper half of the
t-plane. The solid boundary C.D corresponds to the positive real #-plane,
1 > mq and the free surface A..B of the flow domain corresponds to remainder
of the t-axis, n < n,.

The dynamic boundary condition on the free surface A.B is given by the
Bernoulli equation (2) on A.B. On the fixed solid boundary C..D, the fluid
velocity component normal to the surface is zero. The required variables,
namely the fluid velocity on the free surface boundary, can be used to solve a
Dirichlet boundary-value problem. The Dirichlet method for a boundary-value
problem in the upper plane is introduced to express () as a function of . For the
Dirichlet boundary-value problem, the boundary conditions on the real n-axis
of the #-plane are as follows:

The fluid flow

797

Figure 2.

(@) The w-plane for the
fluid flow due to a
submerged sink S; along
a solid horizontal
boundary in a two layer
fluid, and (b) the #-plane
for the fluid flow due to a
submerged sink S;
placed along a solid
horizontal boundary in a
two layer fluid
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On AoB (<), ImQ(n)=—60 (n) (©)
On BD (-1<nm<mq), Im Qn)=—m/2 (7
On DSy (g <n<0), Im Un)=-7 8)
On CoD (n>0), Im Qn) =0 9)

We express the logarithmic variable (), given by equation (4), as a function of
the single variable ¢ and the problem then reduces to a Dirichlet
boundary-value problem in the wupper half-plane. The Dirichlet
boundary-value problem states that when the imaginary part of an
analytical function Q(f) = 7(f) — 16(¢) on the real axis n of the upper half
plane is known, 1.e. the angle that the free surface makes with the horizontal is
given, ie. #m Q(n) = —06(n), and it satisfies the Holder condition at n = 7,
for all values of 1 on the real axis sufficiently close to 7,, namely

[6(n) — ()l = Alm— ol and 0 <A <o, 0<pu=1 (10)

then the solution is found by referring to the work of Muskhelishvilli (1953) and
is given by the Schwarz formula, namely

O = —l/ @dnJrQoo (11)
T ) wm—t

where (), is the value of the function )(f) at £ = oo and since 7(o0) = 0 and

0(o00) = 0, then this implies that Q0o = 0. Since we know the angle that the free

surface makes with the horizontal, we only have to find the fluid velocity on the

free surfaces. On letting ¢ approach the point 7, on the real axis from the upper

half plane and taking the Cauchy principal value, we obtain

. 1 [/ 0 .
Q(ne) = 7(Mo) —10(,) = —7—7/ % dn — 16(n,) 12)

Since we only require the fluid velocity on the free surface, we compare the real
parts of equations (4) and (12), and by using the boundary conditions (6)-(9),
and after some algebraic manipulations of equation (12), we find that the fluid
velocity on the free surface is given by

1 [~ 6 1 -
/n(u(ne) = ~— / n_(zl) dn—éan

To
/m|l— —— 13
“’(no—nd) (13

which gives the fluid velocity, #(n,), on the free surface C.,D, which
corresponds to the region given by 1 > mq4 in the #-plane. We see from equation



(13) that there exist three singularities, namely, one at m, = ngq, which
corresponds to the stagnation point D, another at 1, = —1, which corresponds
to the stagnation point B and finally at m, = 0, which corresponds to the
submerged sink at the point S; in the physical plane.

Now, we introduce the independent variable s, which is taken to be the arc
length along the boundaries, and apply equation (5) to the obtained relations
that connect the #-plane to the physical plane for the free surface boundaries,
namely

dn = me ™ u(s)ds on I';
(14(a) and (b))
dn = —me ™ u(s)ds on Iy

where the free surface and the solid boundary are denoted by I'y and I's,
respectively. Along the free surface we have

u(s) = deg(s)/ds (15)
which on integration gives
ol5) = @ + / u(/)ds on Ty 16)
0
o(5) = on + / u(/)d/ on Ty an
0

where we take the value of the potential functions at the points B and D to be
¢op and ¢p, respectively. In the physical plane we may write equation (13) to
give the fluid velocity on the free surface as

sy = = [ LOAOMD L fns w0
r

. () = no(s) 2| A+ nos)
10(S)
) 18
(Mo($) — Ma) (19
where n(s) and n,(s) are given implicitly by
(/)= —e ™ ns) = —e ™ on I (19)
(/)= —e ™ nys)=—e ™ on Iy (20)

and ¢(/) and ¢(s) are the velocity potentials at any general point and the
specific point / =s, respectively. The solution of the boundary integral
equation can be obtained on the boundary I'; in the physical plane, where we

The fluid flow
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know the function 6~ (s). The unknown variables are the fluid velocity «(s) and
the (x, y) co-ordinates of the free surface and these variables are found by an
iterative procedure as described in the next section.

The position of the sink S; from the point D is calculated by using the
numerical technique which involves the application of equation (13) for the
fluid velocity, #, on the free surface and the potential function ¢ given by
equation (15). The value of the velocity potential ¢, at the point D determines
the value of 7 and the value of ¢p 1s fixed and it is chosen appropriately to give
the desired value of /. The position of the sink is found by the use of equation
(15) which relates the arc length of the free surface, s, in the physical plane to
variables in the upper half of the f-plane, i.e.

dno

dso = ———
S uU(1Mo) Mo

21)

Substitution of equation (13) for u#(n,) in equation (21) yields the position of the
sink, /, from the point D as follows:

1 1o~
, 1 0 e{}f 0 170 dn} q (22)
f¢ = — ),
Y VA ) — M)

where the integral in the numerator can be estimated by approximating
6~ (n) = (6, + 0,,,)/2. It should be noted from equation (22) that the sink
distance / from the point D is dependent on the value of ng or ¢p and it is also
dependent on the angle that the free surface makes with the horizontal, 6 ~
Therefore any calculation of the sink distance from the point D is performed
once a convergent solution is obtained.

Numerical and iterative method for the boundary integral equation
In order to evaluate the integrals that occur in equation (18), we use a similar
interpolative technique to that described by Wen and Manik (2000). We
discretise the integrals in equation (18) over N small intervals [7;, m;,1] and
approximate the unknown function using a piecewise constant interpolation
technique which enables us to perform analytical integrations over a small
interval [7;, m;,1] as follows. We use a piecewise constant procedure and over
each sub-interval [7;, m;.1] Where there is no singularity point in the line of
integration, i.e. n, & [n;, m;11] where n = 7, is the singularity point, we
replace the unknown function 6~ () by constant interpolation, i.e. 87 (n) =
(0; + 6,.,)/2. If the singularity occurs at n = n in the interval [n;, 7,11]
then we approximate 6 () by 6 (n) = 60, , where 6, is the angle that the free
surface makes with the horizontal at the singularity point n = 7.

The iterative numerical procedure employed to solve equations (15) and (18)
is as follows.



(1) For the first iteration, we assume the geometry of the free surface to be
initially in the form of a horizontal straight line, namely v ~(s) = 0.
Hence, the angle that the free surface makes with the horizontal is
known, 1.e. 6(s) = 0. We then discretise the x-axis of the boundaries A..B
and C,D into N grid points, where the angle 6(s) that the free surface
makes with the horizontal at each grid point is known.

(2) For the first iteration, we assume the initial fluid velocity # "(s) on the
free surface A..B to be given by #°(s) = 1 where the superscript #
denotes the number of iterations.

(3) The velocity potential ¢(s) on the free surface A.B and the solid
boundary CsD can be found by numerically integrating equation (15),
1.€. s

e = (,o(o)(sB)+/ uP(/)d/ on Ty (23)

SB

S
0 = ¢Osp) + / u®()ds on Ty (24)

Sp

(4) We find the values of 7(s) on the #-plane using equations (19) and (20).

(5) The new fluid velocity distribution #%”*1(s) on the free surface A..B is
found by substituting the values of 6%s) and 1°(s) into the right hand
side of equation (18).

(6) The new fluid velocity #"+1(s) on the free surface is used to calculate the
y7(s) co-ordinate of the free surface using equation (2).

(7) The new angle 6”+1(s) that the free surface makes with the horizontal is
calculated using a central-difference method, namely

6:(s) = tan"! (yz'+1(3) - yz'—1(8))

Xip1(8) — x;-1(5)

(25)

(8) The new fluid velocity distribution #”*'(s) is used as the new guess for
the fluid velocity on the free surface A..B and inserted in step (2).

(9) The iterative process is repeated until the fluid velocity u(s) on free
surface A..B and the velocity potential ¢(s) have converged to within the
required level of accuracy, say &, such that

" (s) —u's)l < e, 1" s) — "l <eon Ty  (26)

Numerical results and discussion

Calculations have been performed for the free surface profiles in the presence of
two sinks for various values of the Froude number and sink distances /, from
the point D in a two layer fluid. Initially, we study the effect on the free surface

The fluid flow
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Figure 3.

The free surface flow
induced by two sinks
of equal strength in a
two layer fluid situated
on a solid horizontal
boundary at
(r,»)=(-1,1and(1,1),
where /,=1.0 for
upstream Froude
numbers Fr = 0.025,
0.05, 0.075 and 0.1

of increasing the Froude number with the sink distance /; = 1 from the point D
and then examine the free surface for various values of /; for given Froude
numbers.

For most of the cases we have considered in this paper, we have found that a
mesh size of As = 0.015 and the number of points on the free surface of N = 400
was sufficient to give graphically indistinguishable results when larger values
of N and smaller values of As were employed. However, it is observed that the
values of As and N necessary to give such results were dependent on the values
of the upstream Froude numbers. Further, we have studied the critical Froude
numbers, ie. the largest value of the Froude number for which convergent
solutions are possible, and it was found necessary to use a larger value of Nand a
smaller value of As in order to accurately determine and compute the free surface
profiles. The number of grid points N was also dependent on the value of the
distance /; of the sink from the point D. To find solutions for large values of 7,
the range of values of , i.e. the length of the line C..D also increases in order to
obtain the full geometry of the free surface profile, therefore requiring a larger
number of grid points N, e.g. for /; = 6 and Fr = 0.1 we require N = 800 and
As = 0.015 when using piecewise constant interpolation. We found that the
iterative procedure was convergent and, in general, it required less than about 20
iterations to obtain results with an accuracy of & = 10~°. This level of accuracy
was found to be sufficient since any smaller value of & produced results which
were graphically indistinguishable.

Fluid flow for various Froude numbers
Figure 3 shows the free surface flow induced by two sinks of equal strengths,
1e. ¢1 = q2 = 1, non-dimensionalised with respect to U,.H, in a two layer fluid
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and situated on a solid boundary at y = 1.0. The sinks are situated at the
points (x, y)=(—7/,, 1) and (/s, 1), respectively, for Froude numbers
Fr = 0.025, 0.05, 0.075 and 0.1, and there is a stagnation point on the free
surface. We observe, since the sink strengths are equal, that the free surface is
symmetrical about the line x = 0 and therefore we only present the free surface
in the region x =< 0. In all cases, far upstream the free surface depth is unity and
the surface falls gently until the flow approaches the sinks S; and S,. In
general, we observe that for all values of Fr considered, the free surface depths
increase monotonically until the free surface reaches a maximum depth. The
free surface depth increases most rapidly in the region close to the vicinity of
the x location of the sinks, i.e. —2.0 < x < —1.0. It is interesting to note that
the free surface reaches a maximum depth directly below the point x = 0, at
which point the fluid velocity is zero. At this stagnation point we can calculate
the exact position of the free surface using the Bernoulli equation (2). Further,
we observe that an increase in the Froude number from Fr = 0.05 to 0.1 has the
effect of increasing the curvature of the free surface and if we set the Froude
number on the free surface to be zero, i.e. Fr = 0, then from the Bernoulli
equation (2), the free surface is the horizontal line, y ~(x) = 0. We observe that
when the upstream Froude number is Fr = 0.025, then the free surface is close
to being horizontal and is relatively unaffected by the presence of the sink. As
the upstream Froude number increases from 0.025 to 0.1, we observe that both
the free surface curvature and depth increase and this becomes more
pronounced at larger values of Fr, especially in the region —2.0 < x < —1.0.
We find that the critical value of the Froude number above which no
convergent solution can be found is approximately 0.252 and it should be noted
that near this critical Froude number there are no signs of oscillations on the
free surface which may suggest the presence of waves.

Figure 4 shows the free surface fluid velocity « for the free surfaces shown in
Figure 3, induced by a sink on a solid horizontal boundary at y = 1.0 and
/s = 1.0, for upstream Froude numbers Fr = 0.025, 0.05, 0.075 and 0.1 in a two
layer fluid. For all values of Fr investigated, we observe that the free surface
velocity profiles are graphically indistinguishable. The reason being that the
change in the free surface depth, as shown in Figure 3, is relatively small, being
in the range 0.0-0.005, and therefore the effect on the free surface velocity is also
small. Further, as we would expect, for all the values of Fr investigated, the free
surface velocity far upstream is unity and decreases to zero at the stagnation
point x = 0, with the most rapid change in the free surface velocity occurring in
the region close to the x location of the sink, ie. —2.0 < x < —1.0.

Fluid flow for various sink distances ¢

Figure 5 shows the free surface flow induced by two sinks of equal strength on
a solid boundary at y = 1.0 when the sink distances are /s = 0, 1.0, 2.0 and 3.0
for Fr =0.05 and 0.1, in a two layer fluid. We observe that the general
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Figure 4.

The free surface velocity
u for the free surfaces
shown in Figure 3
induced by two sinks of
equal strength in a two
layer fluid situated on a
solid horizontal
boundary at y = 1.0 and
/s=1.0 for upstream
Froude numbers

Fr = 0.025, 0.05, 0.075
and 0.1

behaviour of the free surface profiles in Figure 5(@) and (b) are very similar,
except that the depths of the free surfaces in Figure 5(b) are greater since the
Froude number used in Figure 5(b) is larger, i.e. Fr = 0.1. We observe from
Figure 5(a) that increasing /; has a very important effect on the free surface
profiles. For the case when /; = 0, we find that the free surface is relatively
close to the y-axis, as opposed to the situation when /s = 1.0, 2.0 and 3.0.
The greatest variation of the curvature in the free surface for Z; = 0 occurs in
the region —1.5 < x < —0.5. As we increase 7, 1.e. move the sink more in the
negative direction, we find that the free surface profile is also “moved” or
translated in the negative direction by a factor approximately proportional to
/s. It 1s also interesting to note, the case /; = 2.0, where the free surface
becomes almost horizontal at x = —1.0, and for /; = 3.0, the free surface
becomes horizontal at x = —2.0. This is in contrast to the case when /; = 0,
where the free surface depth continues to increase until it reaches the
stagnation point. We find that the values of the critical Froude number are
approximately 0.290, 0.252, 0.201 and 0.178 when the sink distances are /5 = 0,
1.0, 2.0 and 3.0, respectively, and at the critical Froude number there are no
signs of waves on the free surface. It is interesting to note that the maximum
value of the critical Froude number occurs when /; = 0 and we observe that on
increasing 7, i.e. as the sink moves further away from the point D, this has the
effect of reducing the critical Froude number. This phenomena could be due to
the fact that as the sink moves away from the point D, the region in which the
free surface velocity is close to zero, i.e. the fluid is stagnant, also increases,
(Figure 6). This may create an instability in the two layer system at which point
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Figure 6.

The free surface velocity
for the free surface
shown in Figure 5(a)
which are induced by a
submerged sink on a
solid boundary at

y = 1.0 when the sink
distances are Z,= 0, 1.0,
2.0 and 3.0, for

Fr = 0.05, in a two
layer fluid

Fr=0.05

(i) ¢=0.0 "
(i) £,=1.0

(i) £,=2.0

(iv) £,=3.0

1 v 1

-5 -4

mixing between the two fluids occurs and therefore the critical Froude number
decreases.

Figure 6 shows the free surface velocity # for the free surfaces shown in
Figure 5(a) which is induced by a submerged sink on a solid boundary at
y = 1.0 when /; =0, 1.0, 2.0 and 3.0, for Fr = 0.05, in a two layer fluid. We
observe that there is a difference in the free surface velocity profiles because the
values of /; are different, similar to the difference in the free surface profiles
observed in Figure 5(a). We also note, as /; increases, the region in which the
free surface velocity is very close to zero, or becomes stagnant, also increases.
For example, when /s = 2.0, the free surface velocity is approximately zero in
the region —0.25 < x = 0 but when /; = 3.0 the region in which the free
surface is approximately zero has increased to —1.25 < x = 0.

Critical conditions

We find that on increasing the sink distance 7, the critical Froude number, for
a given value of /7, decreases. The critical values of the Froude number were
found to be approximately 0.29, 0.25, 0.20 and 0.18 when 7/, = 0, 1.0, 2.0 and 3.0,
respectively. However, we also note that the value of /; is dependent on the
value of the velocity potential at the point D, i.e. ¢p (Figure 1). Figure 7 shows
the relationship between /; and the velocity potential value ¢p and it is
observed that when the value of ¢p is large, e.g. ¢p = 5.5, then /s = 0.
However, to increase the value of / it is necessary to reduce the value of ¢p, for
example when ¢p = 1078, 7, > 5.8. Therefore to find results for 7, > 5.8, it is
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necessary to have ¢p < 1078, Computationally, finding convergent solutions
for large values of /5 becomes more difficult for a number of reasons. First, for
large values of /7, say /s > 8, we find that the value of ¢p is very small,
typically ¢p <1072, and convergent solutions become increasingly more
difficult to obtain and ultimately when ¢p becomes too small, the numerical
scheme breaks down. Secondly, in order to find solutions for large values of /s,
the length C,.D also has to increase in order to obtain the full geometry of the
free surface profile, which in turn requires a larger number of grid points, NV,
and therefore increasing the computational time required to obtain convergent
solutions.

Conclusions

In this paper, we have developed an accurate and robust boundary integral
technique for two-dimensional, inviscid, steady, irrotational free surface fluid
flows which are induced by two submerged sinks or sources of equal strength
which are situated along a solid horizontal boundary with a stagnation point on
the free surface of a two layer fluid in the presence of gravity. The non-linear
integral equations derived through the application of the Dirichlet problem,
which is a special case of the Riemann-Hilbert problem, have been solved using
a boundary integral method which involves the discretisation of the non-linear
integral equations and the use of an interpolative technique and an iterative
process. The boundary integral technique developed in this paper is different
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Figure 7.

The relationship between
the sink distance £, and
the velocity potential
value ¢p
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from the traditional boundary element method in that it does not require the
inversion of a large system of non-linear algebraic equations and therefore
requires less computational memory and CPU time.

This boundary integral technique has been used to study the free surface
flow for various Froude numbers and sink locations, /s, in a two layer fluid. We
have found that increasing the sink distance, 7, has the effect of reducing the
value of the critical Froude number, which is the maximum value of the Froude
number for which convergent solutions are possible and also this increases the
number of iterations required for convergence. As the Froude number
increases, we note that the number of iterations increases in order to obtain
convergent solutions until the critical Froude number is reached and for any
further increase in the Froude number the solution breaks down without any
signs of oscillations, 1.e. the existence of possible waves occurring on the free
surface.
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